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ABSTRACT

A new method is presented for fitting polynomial

splines to n equispaced data. Using Jain's [321 cyclic

decomposition of banded Toeplitz matrices, we show that the

operations can be performed by n-point Fast Fourier

Transforms (FFT). Thus, the use of parallel processing FFT

techniques provides a speed of 0(2log2 n), independently of

the degree of the spline. Explicit solutions are derived

for the cubic, quartic and quintic spline.
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Introduction

In many applications there appears the need to represent

a set of raw data by fitting to them a smooth function or set of

functions. A great amount of theoretical work has been done within

the framework of approximation theory in studying properties of

curve fitting for various families of approximating functions.

One of the most attractive and well structured families of

approximating functions are the splines. They have been

extensively studied in the mathematical literature, for example

in [1] - [7] and elsewhere.

Splines have been very useful in statistics. References

[7] - [18] represent the most significant spline application

papers in the statistical literature.

In the engineering literature, spline functions have been

used as approximating tools, in the areas of Systems ([19] - [22])

and Pattern Recognition. ([23] - [30]).

In the-presErrt-paper we concentrate on a fast, parallel

computation technique for fitting a spline to n equispaced data

points. Existing techniques can fit splines in 0(n) time, with

recursive (serial) processing of the data, as in [161. The

new technique is based on the use of Fast Fourier Transform, and

its parallel processing capability. As a result, our technique

* achieves the fitting of a spline in 0(log 2n) time. The n

data points must be equispaced.

1.Ii_ _ _ _ _



Cubic Spline Fit

Let {(xi,Y i) i = 0, 1, ... , ni be a set of data points

with a = x0 < x1 < ... < xn = b. We would like to fit to the

data a function S(x) that has two derivatives. We require that

S(xi) = Yi, i = 0, 1, ... , n and that under the above requirement

S minimizes the integral
b

1 2 (S) = f [S"(x) ]2dx- (1)
a

under the conditions S'(a) = S'(b) = 0.

In the theory of spline functions it is shown [2] that the above

constrained minimum is achieved when S(x) is a set of piecewise

cubic polynomials with continuous first and second derivatives

at the points {xi, i=l, ... , n=l). We will be concerned here only

with uniformly spaced xiIs, hence xi = x + ih, i = 0, 1, ..., n.

h = increment. The continuity requirement demands that:

S'(xT= S'(x.)+ S"I(xh S"(x.+ (2)s . --

for i = 1, 2, ... , n-l.

We denote M. the second derivative of S(x) at x.. Then1 1

S"(x) = Mil (xi-x)h-1 + Mi (x-xil)h-1, x1  < x < x i  (3)

Integrating (3) twice and using the conditions {S(x i) = yi} we obtain:

S(x) = Mi 1 (x i -x) 3 (6h)-  + M (x-x ) (6h)-i +

i-l -l -i-

+ (h- 1 yi- hM 6-) (x-xi-1 ) + (h-yi-1 -hMi- 1 6-) (xi-x)',

x x x(4)

iI <X
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Differentiating (4) once and using the continuity of the first

derivative for i=1, ..., n-i, we find:

Mi 1 + 4Mi + Mi+i = 6h-
2 (yi_l - 2yi + Yi+l

) i=i, 2, ..., n-i

(5)

We assume MO and Mn are known. Then the set of unknowns is

M1 M2 ... n- , and we have a set of n-i equations from (5) with

an equal number of unknowns. In matrix notation the set of

equations is:

TM = 6h- 2H (6)

where

4 1

M1  1 4 1 0

M= M2  , T 1 4 1 (7)

Mn-i

0

1 4 1

1 4

A ...
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Y0 = 2y1 + Y2 - h 2 M06- 1  h1
Yl . 2Y2 + Y3 h 2

H = Y2 - 2 Y3 + Y4

Yn-3 2y n-2 + Y n-i h n-i

Yn-2 2Yn- l + yn - h 2 M n6-1

and T is an (n-l)x(n-1) matrix, H is an (n-i) vector. Clearly the

basic problem here is the efficient inversion of T and the

multiplication T-1 H. We define the following (n-l)x(n-l) matrix:

1 p

p 1 p 0

p I p

T =
p . . .

p

p 1

It is a known result from [31] that the eigenvalues qk and eigen-

vectors Vk of Tp are:

qk = 1 + 2p cos(krn- I ) (8)

V = [sin(kn - I ), sin(2kn - I  sin((n-l)kn - I )]/2-7n

k = 1, ... , n-i (9)

If we divide T by 4, we have the special case of (7) with p = 1/4.

Using the eigenvector-eigenvalue expansion of T, we have:

I.

. .... r '-
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n-i -
T 4 [1 + 0.5 cos(kln )]Vk Vk (10)

k=l

The inverse of T has the same eigenvectors and inverse eigenvalues.

Therefore,

1 n-i- -1 t
T = 1/4 1 [1 + 0.5 cos(krn )] - Vk Vk (ii)

k=l

The equation for the coefficient vector M is:

1.5h - 2 n SkVktVk H  (12)
k=l

where

s = [1 + 0.5 cos(knn- 1] (13)

The matrix VktVk has elements:

{2n sin(kmn-), sin(kqfn- , m, q=l, ... , n-l (14)

If we define F = (f f' n-1 )

-1/2 n--
k = h sin(kqrn ) k=l, ... , n-i (15)

q=i q

then the mth component of the vector M is:

-2n-1/2 n-l -1

= n skf k sin(kmTn - ) (16)
k=l

Computations (15) and (16) are slightly modified versions of

Finite Fourier Transforms, and each of them can be completed in

0(log 2n) time, if Fast Fourier Transform methods are used. In

other words, F is produced from H by a Fast Fourier Transform, and

then M is produced by the vector (s1fl, ... , Sn-ifnI ) by another

Fast Fourier Transform. Hence the computation of M requires

computation time of the order 0(iog2 n).
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The reason for obtaining such a simple solution is the fortunate

event of the eigenvalues and eigenfunctions of T being expressed

in a closed form that relates them to the Fast Fourier Transform.

For higher order splines our solution requires to develop

methods based on the approximation of Toeplitz matrices by circulant

ones, to be presented in the next section. We will utilize a

method of partitioning and cyclical decomposition of banded Toeplitz

matrices, which is due to A.K. Jain [32].

Circulant and Toeplitz Matrices

Part of the exposition in the present section follows Gray

[33].

A circulant matrix C is one having the form:

c0  c1  c2  . . . c n-l

Cn-l cO  c1  c 2' . Cn2

C c n-i (17)

• c2

•c 1

c . . Cn c O1

The eigenvalues qm and eigenvectors Vm of C are the solutions of

CV = qV, V = [v0, ... , Vnl] (18)

or equivalently of the n difference equations
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m-i n-I
Cn-m+k vk + Ck-mVk = qvm , m=O, 1, ... , n-i (19)

k=0 k=m
-i

It is easily verified for any m=0, 1, ... , n-i, that vk = expf-27imkn }

is a solution to (19), resulting in the eigenvalues

n-i -

qm = - c exp1-2wimkn - 1 (20)
k=0 k

(i = 1T-)

and the corresponding eigenvectors

Vm = n- 2 [1, exp(-2 imnmn), ... , exp(-2iim(n-l)n- )H (21)

We can now write

C= n 1  q V (22)
m=0 mm

-1 -ln-i

C- n -1m:0 qmlVmV*t (23)
m= 0

We observe that all circulant matrices have the same set of

eigenvectors. Also, the inverse of a circulant is also a

circulant. The multiplication of C
-1 to any vector H = (h0 .- hn-l)t

can be done by Fast Fourier Transform techniques as follows:

t
Let Z =(zz ... Zn-1 )

Z= C- H (24)

-1/2 n--
Let f k n I h exp(-21Tiskn - ) (25)

k = 0, ... , n-i

be the Finite Fourier Transform coefficients of H. Then, the

components of Z,

L
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Z = n 1 / qk 1 fkexp(2 imkn i) (26)
k=l

m = 0, ..., n-1

are Finite Fourier Transform coefficients. Hence, Z is computable

from (26) in 0(log 2 n) computation time. A Toeplitz matrix Tn of

order (n, m, s), with s < n, m < n is defined as an nxn matrix with

entries t(k, j) such that

(k-j) for -F < k-j < m
t(k, j) = 127)

0 otherwise

and t(m) 0, t(-s) # 0.

t(0) t(-l) . t(-s)
0

t(0)

T t(m) t(0) • . t(-s) (28)
n

0 t(m) . t(0)

With the exception of the upper right and lower left corners
Tn looks like a criculant matrix; i.e., each row is the row above

it shifted to the right one place. If we fill in the upper right

and lower left corners by the appropriate entries, we can make Tn

exactly a circulant. Define the circulant matrix C in this way

t(-k), k =0, . . .,s

ck = (n-k), k n-m, n-i (29)

otherwise

L ~ ~ - ~



9

C, defined as above, is a prime crndidate for approximating

T n  The rationale for such an approximation is the desire to

approximate any operation T- Y, Y = vector, by the operation C- 1 Yn 'n '

which can be performed in O(logn) computation time using the Fast Fourier

Transform.

Let D be the difference

D = C-T (30)n

D has the form

t(m) t (m-l) .. t(1)

L J where Q = t(m) t(rn1)

t (m)

t(-s) 0

t(l-s)
P=

t(-l) t (l-s) t(-s)

Now suppose that we want to solve the equation T X Y, wheren

X, Y are n-vectors. Substitute T = C-D. Then we have

CX = DX + Y or X = C-I DX + C- Y (31)

We partition X and C-1 Y as follows:

X = 2  C-Iy = W2  (32)

X 3 W
L. ,., L I { m .. . , . ..... , ,, .. ,,
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where X1, W1 have dimension s, W3, X3 have dimension m.

We also partition C I

Al AI AI1
A11 A12 A13C-I (33

C = A 2 1 A2 2 A 2 3  (33)

A31 A32 A3 3

The dimensions of A.. will become obvious from the next equations.3]

Equation (31) becomes

X1 = A11 QX 3 + A1 3PX 1 + W 1  (34)

X2 = A 2 1QX 3 + A 2 3PX 1 + W 2  (35)

X3 = A 3 1QX 3 + A33PX 1 + W 3  (36)

Now, we can solve (34) and (36) for (XI, X3) and then substitute

them in (35) to find X2. Solution:

SP A1 1

r[X]= LL33 A31 Q]] W 3]
The method of solution of equations (34) - (36) through

partitioning and cyclical decomposition of the banded Toeplitz

matrices, is due to A.K. Jain [32] and is a very efficient method

for solving a system of linear equations when the matrix Tn is of

the banded Toeplitz form.

Using parallel processing techniques through Fast Fourier

Transform architecture, the solution of equations (34) - (37) is

3achieved in (s+m) + 0(2log2 n) time.

- ., ..- - .. ....* . . . . .. . .
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Quartic and Quintic Spline Fit

In the present section we wil_ ise the method of approximating

a Toeplitz matrix by a circulant to solve efficiently the spline

fit problem for higher degree splines. Explicit solutions will

be given the quartic and quintic spline, which are the simplest

and hence more useful higher degree splines. To avoid

proliferation of notation, we will use M. to denote the kthJ

derivative at the knot x. of a k+l degree spline. Hence, k=2, 3, 4

correspond to the cubic, quartic and quintic spline. The number

of knots used will be n+k for the k+l degree spline, so that k

of them serve as boundary points with parameters assumed known,

leaving exactly n unknown parameters. They form the vector

tM = ... Mn I . Hence the matrix to be inverted will be

always nxn. The vector M of kth derivatives together with the

continuity of the first k derivatives are sufficient to define

the spline completely.

We consider now the quartic spline. Let

14 = {x = jh, a = -h, b = (n+l)h, j = -1, 0, 1, ... , n, n+l}

(38)

be a set of n+3 equispaced knots on [a, b]. A quartic spline S(x)

defined on [a, b] is a piecewise fourth degree polynomial between

knots (x x j+) that fits a set of data {S(xj) = yj, jE 4 } and has

continuous the first three derivatives at the knots, i.e.

S(k)(xj) = S(k) (x+), k = 0, 1, 2, 3, jEI 4  (39)

Let M. = S (x) = S (x.), + I 4  (40)

' 4
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We have (n+3) parameters (M., jC- 4}. The quartic spline

requires specification of the following 3 boundary numbers:

S'(a), S" (a), S' (b),

*It is shown in [4] that the 3 boundary conditions specify uniquely

the "boundary parameters" M1 ,F Mop M n+i* Therefore, we will

* consider them known. It is further shown in [4] that M. satisfy

the following equations:

Mk-2 + llMk-l + llM k + M k+l - 24h-3 (-Yk-2 + 3yk-l -y + kl

for k =1,2, ...,fn (41)

We have now n equations and an equal number of unknown

tparameters, constituting the vector M = [M 1  -. M n]

We define tl-e n constants

-h 3 m0 11/24 - h 3 M/24 + ( 2 - 3y, + 3y0  yl) , k1l

-h 3 m0 /24 + (Y3 - 3 y2 + 3,- yo), k=2

f (42)

(y - 3yj + 3yj. 1 -yj 2 ), 3 <k j n-1

h Mn+/24 + (ny - 3y 3yn- - 2 k=n

Let F (f f )

We also define the nxn Toeplitz matrix



(13)

b 1 0

b b 1
bblb

T b b =11 (43)

1

0ob b 1

1 b b

Then, the vector M from the solution of equations (43) is:

M = 24h- 3T- IF (44)

At this point, we are ready to apply directly the procedure of

Section II because T is banded Toeplitz. If we identify T with

Tn from eq. (30), we have: s = 1, m = 2, t(0) t(l) = b,

t(2) = 1, t(-l) = 1. The matrices P, Q are:

P= (scalar) (45)

A1lso,

Y = 24h- 3F, x1 = scalar

x3 = two dimensional column vector. Here the unknown vector M is

identified with X. Using equations (34) - (37), the solution for
3

M=X is immediate. The time required for the operations is 3 + 0(2 log 2n).

Finally, we will derive the solution to the quintic spline

fit problem. Let

15 = {xj = jh, j = -1, 0, 1, ..., n, n+l, n+2, a = -h, b = (n+2)hl

(46)

be a set of (n+4) equispaced knots in [a, b]. A quintic spline

S(x) defined on [a, b] is a function that has continuous the three first

derivatives on [a, b], fits a set of data yj = S(y-), jcI 5 ' and

L
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minimizes the integral

b
f [S (3 ) (x 12 dx (47)

a

under 4 specified boundary conditions:

S' (a), S"(a), S' (b), S"(b).

(The quintic spline corresponds to a differential operator L=D3)

In spline theory [41 it is shown that the solution to the above

constrained minimization problem is a piecewise fifth order poly-

nomial with the first four derivatives continuous at the joints.

Hence,

S(xj) = yj, s(k) (xT) = s (k) (x3+), k = 0, 1, 2, 3, 4, jcI 5  (48)

Let M -
(4 ) (x-) = S (4 ) (x.), jtI (49)

J J J 5

The 4 boundary conditions specify uniquely the 4 "boundary

parameters" M-1 , M0 , Mn+l, Mn+l, as shown in [4]. Therefore,

we will consider them known. It is shown in [4] that the following

set of n equations is satisfied by the M.'s:
J

Mk 2 + 2 6Mk - + 66Mk + 26Mk Il + Mk+2

120h-4 [yk_ 2 -
4Yk- 1 + 

6yk - 4Yk+l + Yk+2 ]

for k = 1, 2, ..., n (50)

Now we have n equations and n unknown parameters, the components

of the vector M = [M1M 2 .. Mn] . Let F = f f2 f fn] , where:



(15)

(yI - 4y0 + 6y - 4 - 26 . 120- 1h4M0 -

-1 4
- 120 h1 for k=2

(yo - 4y, + 6Y 2 - Y3 + Y4 ) - 120- 1h4Mo for k2

f = (51)

k

(Yk-2 - 4Yk-i + 6Yk - 4Yk+l + Yk+2
) ' for 3 < k < n-2

(yn-3 - 4yn-2 + 6Yn-1 - 4yn + yn+l ) - 120-1h4Mn+l'

for k = n-i

(yn-2- 4 Yn-1 + 6yn - 4yn+l + Yn+2 ) - 26.120- 1h 4Mn+1

h4 120- 1Mn+2  for k=n

Let also

66 26 1

26 66 26 0

1 26

T "(52)

0 66 26

1 26 66

Then the set of equations (52) becomes:

TM 120- 4F (53)

Identifying the parameters of the present problem to the previous

results of Section II, we have: s=m=2

1.

[ __
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P ] Q6] (54)
26 1

Y = 120h- 4F (55)

Using (39) we can compute Xl, X3 with 43 operations. Combining

with (37) we compute X2. The total computational time required is:

4 + 0(21og 2n).

Generally, to fit a k+l degree polynomial spline to n+k

equispaced knots with data {yj}, we have n+k-l intervals and

n+k-2 interior points. For each interval, specification of the

spline requires k+2 constants to be solved for. Hence the

number of unknown parameters is (k+2) (n+k-l). The continuity

of s(J) j = 0, 1, ... , k at the interior knots (joints)

provides (k+l)-(n+k-2) equations. By fitting the data points

{yj} we get (n+k) equations. Let s be the number of specified

boundary conditions. In order to have equal number of unknown

parameters and equations, we must have:

(k+2) (n+k-l) = (k+l) (n+k-2) + (n+k) + 2

hence

s=k.

The boundary conditions can be spec i fied either by a number

of derivatives at the end points a, b or by a number of boundary

values of the moments M.. For the cubic spline, k=2, and we
I

picked M0 , Mn+i as the known boundary values. For the quartic
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spline, we have k=3. The moments (M1l, M 0, Mn+l) were assumed

known. For the quintic, we have k=4 and we used the moments

(M-1 , M0 , Mn+I Mn+2) as known boundary conditions. An alternate

set of boundary conditions that has been frequently used is the

specification of a total of k derivatives of S(x) at a and b.

There is a one to one dependence between the two different boundary

conditions [41. In the present paper, the boundary moments were

chosen as more convenient.

The kth derivative of a (k+l) degree spline is a piecewise

linear function, expressed as:

s (x) M h (x - x) + M)h for x xj<X

(56)

where

M =s(k)xj)

Up to this point we have shown that the parameters {Mj}, which

are the third derivatives at {xj} for the quartic spline and fourth

derivatives at x. for the quintic spline, can be computed from)

the data yj in parallel processing time of 21og2n operations.

Complete specification of the other parameters of the spline

will be now undertaken.

For the quartic spline, we have:

S ( 3 ) (x) = Mj_lh-l(x j - x) + Mh- 1 (x - j_1

for xj. 1 < x < xj (57)

Integrating three times, we have:

L
-- *..



(18)

S(x) = -(24h)'1 Mj- 1 (xj - X) 4 + (24h)-1 M. (x - x I ) 4 +

2 1 2 2 2 3 3
2-hB.(x-x.) + h B.(x - x.) + h Bi, x 1 < x < x. (58)

1 2 3where {B., B., B.) are constants that need to be determined from

{M.}, {y.}, and the continuity requirement at the joints. We

take the consecutive derivatives of S(x), write the corresponding

expressions of S(k) (x) for the intervals (xj I , xj] and [xj, Xj+l),

then apply the continuity requirement for S (k) (x) at x = x,

for k = 1, 2. The following equations result:

S (2) (x) = S(2) (x); 0l Bi + M' j '0, 1, n (59)
(13 ~~x) B2  = B 2 + 1

S(1) (x) = S(1)(x + B ) B. + B 1 , 0, 1, ... , n (60)

The equations (S(x:) = yj) provide the following relationships:

yj = S(x:); B 3 3yj - 24 1 M, j = 0, 1, ... , n, n+l (61)
-i

S(a + =y_; 2- 1B 0 -B0 = -B 03 + h- 3y 1 + 24-iM_ (62)

1 2We still need to determine the two initial values, (B0 , B0 ). For this

purpose, we use one additional equation:

S(xo) = y0 ; h- 3y 0 =-24- 1 M 0 + 2- 1 - B2 + B3  (63)

Substituting (B 1 BI  from (59), (60) for j=0, in terms of B 0 ,

we get:

-1 B2 - B 3 M 13/24 - h- 3y 0  (64)a 0 1 0

1 2 1. 2 3From (62) and (64) we can solve for (B0, B0 ). Then B. B. B.
' 3 3 3

are computable from M..
3

L
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For the quintic spline, we have:

(x) = M -1 h - l (x j - x) + M.h - (x x 1 )

for xj_1 L x < xj (65)

Integrating four times, we find:

S(x) = (120h)- 1 Mj 1 (xj - x) 5 + (120h)-1 Mj (x - xj_1) 5 +

+ 6-1h B1 (x x 3 + 2-1h2B2(x - xj)2 + h3 B3(x - x

+ h B. (66)
J

for xj_ 1 _< x xj

1 2 3 4The constants now are B., B., B., B. We take the consecutive
( k ) "

derivatives S(k) (x) for the intervals [xj_1 , xj and [xj, x j+I,

then apply the continuity requirement for S (k) (x) at x = x

k = 1, 2, 3. We also apply the condition S(xj) = yj. The resulting

equations are:

S(x yj; B 4 h-M4yj j120-1 = 0, 1, ... , n+2 (67)

S ( 3 ) (xj) = S ( 3 ) (x) ; B1  = B + M. (68)

S(2) (xj) = S(2) (x3); Bl Bj + B (69)

(l-) = SR .(x + B3  B3 + B2  - 2- 1 B 1  +12 1 M. (70)
( ( 3+1 1 j+l j+l +

for j = 0, 1, ..., n+l

We need now to solve for the initial values (B0 , B2 , B03 )

which, together with the equations (67) - (70), will give the

complete solution. For this purpose, we will formulate a set of

1 2 3
3 equations, in which the only unknown parameters are (B0, B 0 B 0).
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Note that B are immediately found from (67). From (66) we have:

+ 120-1 Mjh-4. S(xj-1 12= - - -6 -1 B1 + 2 -1 B 2 _ B 3 + B 4  (71)
• - j -1

for j = 0, 1, ... , n+2

We apply (71) for j = 0, 1, 2. The result is:

Y-h-4 =10-1lM -l 1 + -1 2 B3 +B4 (2
y~~1 h =10- 0 + 0 - 0 + 0 (2

-1 1 + 2- 1 B 2 - B3 + B4  (73)yh 4 = 120-M 6 B1  (73

Y h-4 = 120-1M 6-1 B2 + 2- 1 B 2 -B3 + B4  (74)
1 2 2 2

1 2 3 1 2 3
Using (68) - (70), we express (B 1 , B1  B1 , B 2 , B2 , B ) in terms

1 2 3of (B 0 , B0 , B 0 ) and substitute them in (72) - (74). Thus we

1 2 3finally have 3 equations with the unknown parameters (B 0 , B0 , B 0).

k
After the determination of the initial values B0 , equations

(68) - (69) provide all the parameters B..

Conclusions

We have presented an efficient algorithm for fitting a

polynomial spline to a set of n equidistant data. The algorithm

exploits the parallel nature of Fast Fourier Transform and the

form of the difference equations relating the moments fM.I to the

data {yj}. Explicit formulas were obtained for the cubic, quartic

and quintic spline, and the method is readily extensible to higher

order and more general splines. The method involves only linear

operations, and is much simpler than previous ones. The time

complexity of the method is 0(2 log 2n), independently of the order of

the spline.

{7
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